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Abstract Planar chirality properties can be analysed using n-polyominoes and graphs.
In this paper we study graph representations of three-dimensional chiral objects and
discuss the generalization of planar case. We show that graph representations of three-
dimensional chiral objects can be star graphs.
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1 Introduction

Chirality in the ordinary, three-dimensional space plays a key role in many fields of the
natural sciences, especially in biology, chemistry, pharmacology and medical cosme-
tology. In chemistry, chirality is a property of molecules having a non superimposable
mirror image.

In mathematics, chirality of an object S in the three-dimensional space R
3 means,

that it cannot produce a perfect overlap with its mirror image S♦ within R
3. Otherwise

S is said to be achiral in R
3.

The simplest approach of chirality is to say that a 3D object (or a molecule) is either
chiral or achiral. One can think that there is no other possibility. On the other hand
a few scientists recognized that it is possible to measure the degree of chirality. For
example Frank Harary, R.W. Robinson, P.G. Mezey, A.I. Kitaigorodski, K. Mislow,
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J. Siegel, G. Gilat, D. Avnir and A.Y. Meyer (see [3,10,4,9,12,14,13,11,15,7,5]) have
important contributions in this field.

Following the idea introduced and developed by the above listed authors and gen-
eralizing the 2-dimensional case discussed in our paper [2] and Mezey’s result (see
[14]) we consider here the 3-dimensional case. We are going to show that there always
exist special star-graph representations for 3D chiral objects.

2 Basic notions

Many two-dimensional chirality problems can be studied by so called lattice animals
(see e.g. [2], [12], [14] and [13]). Now, we are going to use the same idea in the
3-dimensional space.

Let us consider in the three-dimensional space a Cartesian grid of the first octant
of size n × n × n consisting of (n − 1)3 small unit cube cells. This means that
we took the nth regular subdivision of the interval [0,n] of each coordinate axis:
[0, 1], [1, 2], . . . , [n − 1, n]. Every cell in the grid can be labeled by an ordered
triplet (i, j, k) where the “coordinates” indicate the positions of orthogonal pro-
jections of the cell onto the coordinate axis. For example (2, 3, 1) means that
the orthogonal projection of the unit cube cell onto x-axis is the second subin-
terval [1,2] of x-axis, the orthogonal projection onto y-axis is the third subinter-
val [2,3] of y-axis and the orthogonal projection onto z-axis is the first subinterval
[0,1].

Definition 2.1 Two faces (belonging to the same cube or to different cubes) are called
adjacent if they have exactly one common edge.

Definition 2.2 Two cells (unit solid cubes) are called adjacent if they have exactly
one common face.

Definition 2.3 Let us denote by A a connected set resulted by the union of an arbitrary
number of adjacent solid cells. The boundary of A is defined as the union all faces
which belong to exactly one cell of A.

Definition 2.4 A union of (finite number of) adjacent cells is called three-dimensional
solid animal if it is connected and it does not contain “hole”.

In this paper we deal with solid animals only. It means that they consist of all faces
and all interior points of the cubic cells as ordinary point sets in the 3D space. Thus
we’ll omit the attribute “solid” further on. The boundaries of these animals are non-
self-intersecting continuous simple closed surfaces in the 3D space. They divide the
space into an “interior” region and an “exterior” region. This property is often called
3D Jordan property.

Definition 2.5 The interior of A is defined as the interior region determined by the
boundary B of A.
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3 New results

Let us consider an arbitrary 3D animal A with boundary B and its mirror image A♦
with boundary B♦. Assume that A and A♦ are positioned in the three-dimensional
space so that the intersection of their interior I nt (A)∩I nt (A♦) has maximum possible
volume, i.e.

Volume
[

I nt (A) ∩ I nt (A♦)
]

= maximum.

We denote the union of B and B♦ satisfying condition of maximum intersection by
B ⊕ B♦. Note that B ⊕ B♦ contains only the faces of the boundaries B and B♦. Grid
faces of B ∩ B♦ are considered double faces and in the figures of the paper they are
denoted by bold lines. Object B ⊕ B♦ partitions R

3\ (
B ⊕ B♦)

into k + 1 disjoint
subsets, namely S0, S1, . . . , Sk where S0 is the unbounded exterior part of the space
lying outside of both 3D Jordan-property surfaces B and B♦. Let us keep the notations
of [14] and [2], considering S1 = I nt (A) ∩ I nt (A♦) and for i = 2, 3, . . . , k let
Si be the maximum connected subset of the partition which belongs to the interior of
precisely one of A or A♦ having no common points with any of S0, S1, . . . , Si−1.

Observe that S1 may be the union of more disjoint components, but S2, S3, . . . , Sk

are all connected components.
If B ⊕ B♦ is not unique, one with the smallest k must be chosen (“minimum k

condition”).
Now we are going to associate to the partition S1, . . . , Sk a graph G with node

set V (G) = {1, . . . , k}. Each node i of the graph G corresponds to a subset Si ,
i = 1, . . . , k. Adjacency of nodes in G will be defined as follows.

Definition 3.1 Nodes i and j are adjacent in the graph G if the corresponding subsets
Si and S j of the partition are separated by a set of connected adjacent simple faces,
i.e. double grid faces from B ⊕ B♦ are excluded. Such a separating (hole-free) union
of adjacent simple grid faces is called wall further on.

As an example for the above mentioned notions let us consider a special 3D chiral
animal A and its mirror image A♦ with boundaries B respectively B♦ (Fig. 1). (Here
the dotted line represents the mirror-plane.)

Fig. 1 A and its mirror image A♦
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Fig. 2 B ⊕ B♦ of our example

Fig. 3 The graph associated to
A in our example

1

2 3 4 5

Considering condition of maximum intersection we obtain B ⊕ B♦ as shown in
Fig. 2.

We can associate a graph to A as shown in Fig. 3.

3.1 Minimum k condition

We are going to illustrate the importance of “minimum k condition” by the following
example. Consider now the animal C shown in Fig. 4.

This chiral object C from Fig. 4 consists of 13 unit cubes. One can reach the
maximum intersection with its mirror image in two different ways. There are 9 common
cubes in both cases. Figure 5 shows one possibility. In this case k = 3.

The graph associated to the object considered in Case 1) is shown in Fig. 6
Another possibility to get the maximum intersection has shown in Fig. 7.
Notice that Case 2) from Fig. 7 cannot be considered because of the minimum k

condition.

Fig. 4 A chiral object C and its mirror image C♦
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Fig. 5 Case 1) Maximum
intersection of C and C♦ when
k = 3

Fig. 6 Case 1) graph
representation of C

1

2 3

Fig. 7 Case 2) maximum
intersection of C and C♦ when
k = 5

3.2 New theorems

Let us consider now an arbitrary animal A in the 3 dimensional space with boundary
B and its mirror image A♦ with boundary B♦.

Imagine we color the grid faces of B by red color and those of B♦ by blue. All
other faces of the grid are considered uncolored.

Lemma 3.1 Neither A nor A♦ crosses any Si , for i = 1, 2, . . . , k.

Proof Neither A nor A♦ crosses S1, because S1 = I nt (A) ∩ I nt (A♦), so lemma
3.1 holds for i = 1. In case of i ∈ {2, 3, . . . , k} suppose indirectly, that A or A♦
crosses Si . By definition Si belongs to the interior of precisely one of A or A♦. If the
other one crosses Si that contradicts to the condition Volume

[
I nt (A) ∩ I nt (A♦)

] =
maximum. ��

Lemma 3.1 implies that I nt (Si ) can contain only “uncolored” grid faces for i =
1, 2, . . . , k. Boundaries B and B♦ are surfaces with 3D Jordan properties, so Lemma
3.1 also implies that two adjacent partition sets Si and S j can be separated only by a
monochromatic wall.

Theorem 3.1 If Si and S j are adjacent, then either i = 1 or j = 1.

Proof Suppose indirectly that there exist i and j, (i, j ∈ {2, 3, . . . , k}) such that Si

and S j are adjacent partition sets. One of them belongs to I nt (A)\I nt (A♦) and the
other to I nt (A♦)\I nt (A). (Otherwise i = j would be, or we have a monochromatic
wall in I nt (A)\I nt (A♦)or I nt (A♦)\I nt (A) that is a contradiction with the condition
of maximum intersection.) This contradicts the fact that the wall separating adjacent
Si and S j cannot contain double grid faces. ��
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Theorem 3.2 For each i ∈ {2, . . . , k} Si and S1 are adjacent partition sets.

Proof Suppose indirectly that there exists an i ∈ {2, . . . , k} such that S1 and Si are
not adjacent sets. Theorem 3.1 implies that there is no adjacent partition set for Si .

B and B♦ have 3D Jordan-property, thus Lemma 3.1 implies that a wall of double
faces separates Si from the other partition sets situated in its neighborhood, that is a
superposition of B with its mirror image B♦, so we obtain a contradiction with the
fact that B is chiral. ��

We can summarize our results for the graph representation of B in the following
theorem:

Theorem 3.3 The graph representation of a chiral surface with 3D Jordan-property
is a star graph, i.e. it contains a node that is adjacent to all other nodes and there are
no other adjacent nodes in the graph.

4 Conclusion

Several “measures” of chirality have been proposed earlier. For example Frank Harary
and Paul Mezey wrote remarkable papers in this field (see [4], [12] and [14]). Here we
must mention Harary and Robinson’s pioneer work (see [9]) and significant contribu-
tions of A.I. Kitaigorodski, K. Mislow, J. Siegel, G. Gilat, D. Avnir and A.Y. Meyer
(see [11,15,7,5,6,1,8]).

In our earlier work [2] we proved that a chiral object in the 2 dimensional space
can be represented with a star graph. The number of nodes of the graph measures the
degree of chirality of an object. In this paper we show that the idea can be extended
to the 3-dimensional objects, i.e. a 3-dimensional chiral object can be represented by
a star graph which also provides solution for the quantification problem of chirality
in R

3.
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